

Three new bromotyrosine derivatives lethal to crab from the marine sponge, *Pseudoceratina purpurea*[☆]

Nobuhiro Fusetani,^{a,*} Yoshitsugu Masuda,^a Yoichi Nakao,^a Shigeki Matsunaga^a and Rob W. M. van Soest^b

^aLaboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

^bInstitute for Systematics and Ecology, University of Amsterdam, 1090 GT Amsterdam, The Netherlands

Received 4 June 2001; accepted 16 July 2001

Abstract—Three new bromotyrosine-derived metabolites, tokaradines A (1), B (2), and C (3), were isolated from the marine sponge *Pseudoceratina purpurea*. Their structures were determined by spectral methods. Tokaradines were lethal to the crab *Hemigrapsus sanguineus*. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Marine sponges of the order Verongida are a rich source of bromotyrosine-derived compounds² which showed various biological activities such as antifouling,^{3,4} cytotoxicity,^{5–7} antibacterial,⁶ and Na,K-ATPase inhibitory.⁵ In our search for potential insecticides from Japanese marine invertebrates, we found that the hydrophilic extract of the marine sponge *Pseudoceratina purpurea* collected in southern Japan was lethal to the crab *Hemigrapsus sanguineus*. Bioassay-guided isolation afforded three new bromotyrosine derivatives, tokaradines[†] A (1), B (2) and C (3), along with the known purealidins A (4)⁵ and C (5).⁶ This paper describes the isolation, structural elucidation, and biological activity of these compounds.

Keywords: amine; biologically active compounds; pyridinium salt; sponges

2. Results and discussion

The MeOH extract of the frozen sponge (4.8 kg) was partitioned between Et₂O and H₂O. The aqueous layer was extracted with *n*-BuOH, and the *n*-BuOH layer was separated by ODS flash chromatography, gel filtration, silica

^{*} Bioactive Marine Metabolites series, Part 109. For Part 108, see Ref. 1.

^{*}Corresponding author. Tel.: +81-3-5841-5299; fax: +81-3-5841-8166; e-mail: anobu@mail.ecc.u-tokyo.ac.jp

Nakanoshima Island where the sponge was collected is the member of the Tokara Archipelago.

Figure 1. Partial structures of tokaradines A (1) and B (2).

gel column chromatography, and reversed phase HPLC to afford tokaradines A (1, 9.7 mg, $2.0 \times 10^{-4}\%$ based on wet weight), B (2, 12.2 mg, $2.5 \times 10^{-4}\%$), and C (3, 6.3 mg, $1.3 \times 10^{-4}\%$), along with the known purealidins A (4, 4.8 mg, $6.0 \times 10^{-3}\%$), and C (5, 4.0 mg, $5.0 \times 10^{-3}\%$).

Tokaradine A (1) exhibited a 1:4:6:4:1 ion cluster peak at m/z 803/805/807/809/811, indicating the presence of four bromine atoms. The molecular formula of C₂₈H₃₁Br₄N₄O₄ was determined on the basis of HR-FABMS and NMR data. The ¹H NMR spectrum (in CD₃OD containing TFA) was composed of nine methylenes, a pair of aromatic singlets, and protons assignable to an N-substituted pyridinium unit. Interpretation of the COSY spectrum classified the nine methylenes into four spin systems; two units of N-CH₂-CH₂-CH₂-O (H₂-1-H₂-3 and H₂-17-H₂-19), N-CH₂-CH₂ (H₂-11-H₂-12), and an isolated singlet methylene (H₂-8). Two sets of 4-alkyl-2,6-dibromophenol moiety (C-4-C-7 and C-13-C-16) were also implied from ¹H and ¹³C chemical shifts as well as 2D NMR data. The carbon signals at δ 151.9 (C-9) and 165.5 (C-10) could be assigned to the amide-oxime conjugated system which was supported by the presence of two exchangeable proton signals at δ 8.13 and 12.09 in the ${}^{1}H$ NMR spectrum measured in DMSO- d_{6} . $HMBC^{8}$ cross peaks, H_{2} -8/C-6, C-6', C-7, C-9, C-10, H_{2} -11/ C-10, C-13, H₂-12/C-13, C-14, C-14', H-14, H-14'/C-12 accommodated this amide-oxime system between two

4-alkyl-2,6-dibromophenol units, thus constructing partial structure **b**. Partial structure **c** was composed of an N-CH₂-CH₂-CH₂-O unit and an *N*-substituted pyridinium moiety, which were connected by an HMBC cross peak, H₂-19/C-1". The partial structure **a** was the same C₃ unit as above, but terminating at the amino group in place of pyridinium group; the other end of this C₃ unit was linked to the oxygen atom of the 2,6-dibromophenol moiety. The chemical shift values of C-8 implied that the oxime was *Z* geometry⁹ (Fig. 1).

An HMBC correlation, H-17/C-16 connected partial structures **b** and **c**. Although there was no cross peak which supported connectivity between C-3 and C-4, chemical shift values of H-3/C-3 and the molecular formula were consistent with the presence of an ether linkage between these carbons.

Tokaradine B (2) was isomeric to tokaradine A (1). Interpretation of 2D NMR spectra resulted in three partial structures found in 1. Although crucial HMBC cross peaks were not observed among partial structures, tokaradine B (2) must have an alternative sequence of partial structures. This problem was overcome by FABMS data. Tokaradine A (1) gave two sets of a 1:2:1 triplet peak at m/z 411/413/415 and 347/349/351, while tokaradine B (2) gave those at m/z 426/428/430, and 409/411/413. These fragment ions could

Figure 2. FABMS fragmentation of tokaradines A (1), B (2), and N,O-diacetyltokaradine B (6).

have arisen by cleavages as shown in Fig. 2, which was further supported by FABMS data of tokaradine B diacetate (6) exhibiting intense triplet ions at m/z 409/411/413 (Fig. 2).

Tokaradine C (3) had a molecular formula of C₁₇H₂₅Br₂N₃O₂ which was determined by HR-FABMS. The ¹H NMR spectrum of 3 indicated the existence of seven methylenes, one methoxy group, an α,β -unsaturated carbonyl group, and one 4-alkyl-2,6-dibromophenol moiety. UV absorption maxima at 229 and 279 nm were consistent with 6,8-dibromo-7-methoxycinnamoyl moiety, 10 which was supported by HMBC cross peaks, H4/C6, H6/C4, C5, H7/C5, H6, H7/C8, and H1/C2. Interpretation of the COSY spectrum and chemical shift values lead to two substructures, N-CH₂-CH₂-CH₂-N and N-CH₂-CH₂-CH₂-CH₂-N; HMBC cross peaks, H12/C13 and H13/C12 connected these substructures to complete a spermidine unit (C9-15). An HMBC cross peak, H9/C8 linked the spermidine unit to dibromomethoxycinnamoyl moiety via an amide bond to construct structure 3.

Tokaradines A (1) and B (2) were lethal to the crab H. sanguineus at concentrations of 50 and 20 µg/g, respectively. Tokaradine C (3), purealidins A (4) and C (5) were less toxic (Table 4). Tokaradines A and B contain an N-substituted pyridinium unit, while the less toxic tokaradine C does not possess any strong cationic group. This may suggest that a cationic group is important for toxicity. Tokaradines A and B are the rare example of marine bromotyrosine-derived metabolites containing an N-substituted pyridinium group; another example is purpureamine C from the marine sponge Psammaplysilla purpurea. 11

3. Experimental

3.1. General

NMR spectra were recorded on a JEOL A600 NMR spectrometer. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR chemical shifts were referenced to

the solvent peaks: δ 3.30 and 49.0 for CD₃OH, δ 2.49 for DMSO- d_6 . FAB mass spectra were measured on a JEOL JMX-SX102/SX102 tandem mass spectrometer using glycerol as a matrix. UV spectra were recorded on a Shimadzu UV-mini 1240 UV-VIS Spectrophotometer.

3.2. Animal material

Sponge samples were collected using SCUBA at a depth of 15–20 m off Nakanoshima Island in the Tokara Archipelago (129°51′0″N, 29°50′18″E). The specimens were frozen immediately and preserved at -20° C until extraction. The sponge was identified *P. purpurea* and deposited at the Institute for Systematics and Ecology, University of Amsterdam (ZMA16717).

3.3. Isolation

The frozen sponge (4.8 kg, wet weight) was extracted with MeOH (6 L×3), and the combined extracts were concentrated and partitioned between Et₂O (9 L×3) and H₂O (9 L). The aqueous phase was further extracted with n-BuOH (9 L×3); the n-BuOH phase which was lethal to crabs was separated by ODS flash chromatography with aqueous MeOH containing 0.05% TFA. The fraction eluted with 60% MeOH containing 0.1% TFA (10.7 g) was gel filtered on Sephadex LH-20 with MeOH-AcOH (99:1). The active fraction was further fractionated by ODS flash chromatography with aqueous MeCN containing 5% AcOH. The fraction eluted with MeCN-H₂O-AcOH (20:75:5) was separated on silica gel with CHCl₃-MeOH-AcOH (8:2:0-5:5:1). The fractions eluted with CHCl₃-MeOH-AcOH (6:4:1 and 5:5:1) were combined and separated by reversed phase HPLC (Cosmosil 5C₁₈-ARII using gradient elution of 20–40% MeCN containing 0.05% TFA) to furnish three crude compounds, which were finally purified on the same column with aqueous 30% MeCN containing 0.05% TFA to afford tokaradines A (1: 9.7 mg), B (2: 12.2 mg), and C (3: 6.3 mg).

Table 1. ¹H and ¹³C NMR data for tokaradine A

Position	δ_{H} (mult., J in Hz)	$\delta_{ m C}$	COSY	HMBC	
1	3.28 (t, 7.7)	38.9	H-2	C-2, C-3	
2	2.19 (tt, 5.7, 7.7)	29.0	H-1, H-3	C-1, C-3	
3	4.08 (t, 5.7)	71.6	H-2	C-1, C-2	
4		152.2			
5,5'		117.8			
6,6'	7.49 (s)	134.4		C-4, C-5, C-6, C-6', C-8	
7		137.9			
8	3.82 (s)	30.7		C-6, C-7, C-9, C-10	
9		151.9			
10		165.5			
11	3.41 (t, 7.1)	41.5	H-12	C-10, C-12, C-13	
12	2.74 (t, 7.1)	35.2	H-11	C-11, C-13, C-14	
13		140.3			
14,14'	7.43 (s)	134.6		C-12, C-14, C-14', C-15, C-16	
15,15'		118.7			
16		152.4			
17	4.10 (t, 5.4)	70.8	H-18	C-18, C-19,C-16	
18	2.60 (tt, 5.4, 6.9)	32.5	H-17, H-19	C-17, C-19	
19	4.99 (t, 6.9)	60.9	H-18	C-17, C-18, C-1"	
1",5"	9.13 (d, 5.8)	146.4	H-2"	C-19, C-2", C-5"	
2",4"	8.14 (dd, 5.8, 7.7)	129.5	H-1", H-3"	C-1", C-4"	
3"	8.60 (t, 7.7)	147.1	H-2"	C-1"	

Table 2. ¹H and ¹³C NMR data for tokaradine B

Position	δ_{H} , (mult., J in Hz)	$\delta_{ m C}$	COSY	HMBC	
1	4.98, (t 7.1)	60.8	H-2	C-2, C-1"	
2	2.60, (tt, 5.6,7.1)	32.5	H-1, H-3		
3	4.10, (t, 5.6)	70.9	H-2		
4		152.3			
5,5'		118.5			
6,6'	7.47, (s)	134.6		C-4, C-5, C-6, C-6', C-8	
7		138.0			
8	3.81, (s)	30.7		C-6, C-7, C-9, C-10	
9		151.9			
10		165.4			
11	3.42, (t, 7.1)	41.5	H-12	C-10	
12	2.74, (t, 7.1)	35.2	H-11	C-11, C-13, C-14	
13		140.2			
14,14'	7.43, (s)	134.4		C-12, C-14, C-14', C-15, C-16	
15,15'		118.7			
16		152.3			
17	4.08, (t, 5.8)	71.6	H-18		
18	2.20, (tt, 5.8,7.7)	29.0	H-17, H-19		
19	3.29, (t, 7.7)	38.9	H-18	C-18	
1",5"	9.13, (d, 5.8)	146.4	H-2"	C-19, C-2", C-5"	
2",4"	8.13, (dd, 5.8,7.7)	129.5	H-1", H-3"	C-1", C-4"	
3"	8.59, (t, 7.7)	147.1	H-2"	C-1"	

The fractions eluted with CHCl₃–MeOH–AcOH (8:2:0.1 and 7:3:0.5) from the silica gel column were combined to afford 1.25 g of crude material; a 20 mg portion was separated by reversed phase HPLC [Cosmosil 5C₁₈-ARII (20×250 mm); 30% MeCN containing 0.05% TFA; 8.0 mL/min; UV detection at 220 nm] to yield purealidin C (5, 4.0 mg). From the polar fraction, purealidin A (4, 4.8 mg) was separated by reverse phased HPLC [Cosmosil 5C₁₈-AR-II (20×250 mm); gradient elution of aqueous MeCN containing 0.05% TFA; 8.0 mL/min; UV detection at 220 nm].

3.3.1. Tokaradine A (1). Yellow amorphous solid; UV (MeOH) λ_{max} 216 nm (ϵ 21,800), 258 sh (4,000); ¹H and ¹³C NMR data in CD₃OD containing TFA, see Table 1. ¹H NMR in DMSO- d_6 ; δ 12.09 (9-NOH), 9.17 (H1", H5"), 8.60 (H3"), 8.17 (H2", H4"), 8.13 (10-NH), 7.86 (1-NH), 7.47 (H6, H6'), 7.44 (H14, H14'), 4.88 (H19), 3.99 (H17), 3.97 (H3), 3.73 (H8), 3.33 (H11), 3.05 (H1), 2.71 (H12), 2.49 (H18), 2.05 (H2); FABMS (glycerol matrix) m/z 803/805/807/809/811 [M]⁺, 645/647/649, 466/468/470,

411/413/415, 347/349/351; HR-FABMS (glycerol matrix) m/z 806.9037 [M]⁺ (calc. $C_{28}H_{31}Br_4N_4O_4$, Δ 0.0 mmu).

3.3.2. Tokaradine B (2). Yellow amorphous solid; UV (MeOH) λ_{max} 214 nm (ϵ 20,600), 258 sh (3,800); ¹H and ¹³C NMR data in CD₃OD containing TFA, see Table 2. ¹H NMR in DMSO- d_6 ; δ 12.07 (9-NOH), 9.18 (H1", H5"), 8.60 (H3"), 8.17 (H2", H4"), 8.12 (10-NH), 8.04 (19-NH), 7.47 (H14, H14'), 7.44 (H6, H6'), 4.88 (H1), 4.01 (H3), 3.97 (H17), 3.74 (H8), 3.34 (H11), 3.05 (H19), 2.73 (H12), 2.49 (H2), 2.07 (H18); FABMS m/z 803/805/807/809/811 [M]⁺, 466/468/470, 426/428/430, 409/411/413; HR-FABMS m/z 806.9007 [M]⁺ (C₂₈H₃₁Br₄N₄O₄, Δ –3.1 mmu).

3.3.3. Tokaradine C (3). Yellow amorphous solid; UV (MeOH) λ_{max} 229 nm (ϵ 12,200), 279 (9,900); ¹H and ¹³C NMR data in CD₃OD containing TFA, see Table 3. ¹H NMR in DMSO- d_6 ; δ 8.18 (8-NH), 7.86 (H4, H4'), 7.32 (H6), 6.65 (H7), 3.80 (H1), 3.18 (H9), 2.96 (H13), 2.90 (H12), 2.86 (H15), 1.88 (H14), 1.59 (H11), 1.50

Table 3. ¹H and ¹³C NMR data for tokaradine C

Position	δ_{H} , (mult., J in Hz)	$\delta_{ m C}$	COSY	HMBC	
1	3.87, (s)	61.2		C-2	
2		156.3			
3,3'		119.5			
4,4'	7.78, (s)	132.9		C-2, C-3, C-4, C-4', C-6	
5		135.3			
6	7.38, (d, 15.8)	138.2	H-7	C-4, C-5, C-7, C-8	
7	6.56, (d, 15.8)	123.8	H-6	C-5, C-6, C-8	
8		168.0			
9	3.34, (t, 7.7)	39.5	H-10	C-8, C-10, C-11	
10	1.65, (tt, 6.9,7.7)	27.5	H-9, H-11	C-9, C-11, C-12	
11	1.75, (tt, 6.9,8.1)	24.4	H-10, H-12	C-9, C-10	
12	3.06, (t, 8.1)	48.5	H-11	C-10	
13	3.12, (t, 7.7)	45.7	H-14	C-12, C-14, C-15	
14	2.07, (tt, 7.7,8.1)	25.3	H-13, H-15	C-13, C-15	
15	3.05, (t, 8.1)	37.8	H-14	C-14	

(H10); FABMS m/z 462/464/466 $[M+H]^+$, 317/319/321, 238/240; HR-FABMS m/z 464.0366 $[M+H]^+$ ($C_{17}H_{25}Br_2N_3O_2$, Δ -0.5 mmu).

3.4. Acetylation of 2

Tokaradine B (0.8 mg, in MeOH) was treated with Ac_2O (0.1 mL) for 1 h at rt to furnish N,O-diacetyltokaradine B (6).

3.4.1. *N,O*-Diacetyltokaradine **B** (6). ¹H NMR (DMSO- d_6): δ 9.16 (2H, d), 8.59 (1H, d), 8.16 (2H, dd), 8.11 (1H, br), 7.89 (1H, br), 7.44 (2H, s), 7.43 (2H, s), 4.87 (2H, t), 4.00 (2H, t), 3.89 (2H, t), 3.73 (2H, s), 3.33 (2H, t), 3.22 (2H, t), 2.72 (2H, t), 2.49 (2H, m), 2.49 (3H, s), 1.88 (2H, tt), 1.78 (3H, s); FABMS (pos.) m/z 887/889/891/893/895 [M]⁺.

3.5. Bioassay

Individuals of the crab H. sanguineus were collected at a rocky beach on the Miura Peninsula and kept in an aquarium containing seawater until used for assay. Crabs of 1-5 g were used for the bioassay. The procedure of bioassay was performed essentially according to the method of Kem. Samples were dissolved in MeOH/ H_2O (1:1), and $5 \mu L$ aliquots were injected into a crab (3 ± 2 g) by inserting a 26-gauge syringe needle at dorsal membranous junction between the cephalothorax and tail exoskeletons. For one dose, 5-10 crabs were used. After injection, each crab was kept in a plastic case ($3\times 5\times 7$ cm), which was allowed to stand at rt. An hour after injection, the number of dead crabs was counted (Table 4).

Table 4. Lethality of tokaradines to crabs

LD ₉₉ (μg/g crab)	
50	
20	
>100	
100	
>100	
0.5	
Non toxic ^a	
Non toxic ^a	
	50 20 >100 100 >100 0.5 Non toxic ^a

 $^{^{\}rm a}$ At 100 $\mu g/mg$ crab.

Acknowledgements

We thank Professor P. J. Scheuer of the University of Hawaii for editorial comments. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Culture and Sports of Japan.

References

- Fusetani, N.; Nishimura, S.; Matsunaga, S. J. Nat. Prod. 2001, 64, 816–818.
- Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1–49 and the previous series.
- 3. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. *Tetrahedron* **1996**, *52*, 8181–8186.
- 4. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. *J. Org. Chem.* **1996**, *61*, 2936–2937.
- Ishibashi, M.; Tsuda, M.; Ohizumi, Y.; Sasaki, T.; Kobayashi, J. Experientia 1991, 47, 299–300.
- Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.; Mikami, Y. Tetrahedron 1991, 47, 6617–6622.
- 7. Hirano, K.; Kubota, T.; Tsuda, M.; Watanabe, K.; Fromont, J.; Kobayashi, J. *Tetrahedron* **2000**, *56*, 8107–8110.
- Bax, A.; Azolos, A.; Dinya, Z.; Sudo, K. J. Am. Chem. Soc. 1986, 108, 8056–8063.
- Arabshahi, L.; Schmitz, F. J. J. Org. Chem. 1987, 52, 3584– 3586
- Kassühlke, K. E.; Faulkner, D. J. Tetrahedron 1991, 47, 1809–1814.
- Yagi, H.; Matsunaga, S.; Fusetani, N. *Tetrahedron* 1993, 49, 3749–3754.
- 12. Kem, W. R. J. Biol. Chem. 1976, 251, 4184-4192.
- 13. Kem, W. R. Toxicon 1971, 9, 23-32.